AGING PROCESS
Salminen A. (2024) The role of the immunosuppressive PD-1/PD-L1 checkpoint pathway in the aging process and age-related diseases. J. Mol. Med. (Berl.) https://doi.org/10.1007/s00109-024-02444-6.
Salminen A, Kaarniranta K, Kauppinen A. (2024) Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res. Rev. 97, 102296. https://doi.org/10.1016/j.arr.2024.102296.
Salminen A. (2024) AMPK signaling inhibits the differentiation of myofibroblasts: impact on age-related tissue fibrosis and degeneration. Biogerontology 25, 83-106. https://doi.org/10.1007/s10522-023-10072-9.
Salminen A. (2023) The role of immunosuppressive myofibroblasts in the aging process and age-related diseases. J. Mol. Med. (Berl.) 101, 1169-1189. https://doi.org/10.1007/s00109-023-02360-1
Salminen A. (2023) The plasticity of fibroblasts: A forgotten player in the aging process. Ageing Res. Rev. 89,101995. https://doi.org/10.1016/j.arr.2023.101995
Salminen A. (2023) Aryl hydrocarbon receptor (AhR) impairs circadian regulation: Impact on the aging process. Ageing Res. Rev. 87, 101928. https://doi.org/10.1016/j.arr.2023.101928
Salminen A. (2022) Aryl hydrocarbon receptor (AhR) reveals evidence of antagonistic pleiotropy in the regulation of the aging process. Cell. Mol. Life Sci. 79, 489. https://doi.org/10.1007/s00018-022-04520-x
Salminen A. (2022) Mutual antagonism between aryl hydrocarbon receptor and hypoxia-inducible factor-1α (AhR/HIF-1α) signaling: Impact on the aging process. Cell. Signal. 99, 110445. https://doi.org/10.1016/j.cellsig.2022.110445
Salminen A. (2022) Clinical perspectives on the age-related increase of immunosuppressive activity. J. Mol. Med. (Berl) 100, 697-712. https://doi.org/10.1007/s00109-022-02193-4
Salminen A, Kaarniranta K, Kauppinen A. (2022) Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin. Inflamm. Res. 71, 817-831. https://doi.org/10.1007/s00011-022-01598-8
Salminen A. (2022) Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res. Rev. 75, 101573. https://doi.org/10.1016/j.arr.2022.101573
Salminen A, Kaarniranta K, Kauppinen A. (2021) Insulin/IGF-1 signaling promotes immunosuppression via the STAT3 pathway: impact on the aging process and age-related diseases. Inflamm. Res. 70, 1043-1061. https://doi.org/10.1007/s00011-021-01498-3
Salminen A. (2021) Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J. Mol. Med. (Berl). 99, 1553-1569. https://doi.org/10.1007/s00109-021-02123-w
Salminen A. (2021) Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res. Rev. 67, 101280. https://doi.org/10.1016/j.arr.2021.101280
Salminen A. (2021) Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J. Mol. Med. (Berl) 99, 1-20. https://doi.org/10.1007/s00109-020-01988-7
Salminen A. (2020) Activation of immunosuppressive network in the aging process. Ageing Res. Rev. 57, 100998. https://doi.org/10.1016/j.arr.2019.100998
Salminen A, Kaarniranta K, Kauppinen A. (2020) Exosomal vesicles enhance immunosuppression in chronic inflammation: Impact in cellular senescence and the aging process. Cell. Signal. 75, 109771. https://doi.org/10.1016/j.cellsig.2020.109771
Salminen A, Kauppinen A, Kaarniranta K. (2019) AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J. Mol. Med. (Berl) 97, 1049-1064. https://doi.org/10.1007/s00109-019-01795-9
Salminen A, Kaarniranta K, Kauppinen A. (2019) Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell. Mol. Life Sci. 76, 1901-1918. https://doi.org/10.1007/s00018-019-03048-x
Salminen A, Kaarniranta K, Kauppinen A. (2018) The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res. Rev. 48, 1-10. https://doi.org/10.1016/j.arr.2018.09.001
Salminen A, Kauppinen A, Kaarniranta K. (2018) Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence. Biogerontology 19, 325-339. https://doi.org/10.1007/s10522-018-9762-8
Salminen A, Kaarniranta K, Kauppinen A. (2018) Phytochemicals inhibit the immunosuppressive functions of myeloid-derived suppressor cells (MDSC): impact on cancer and age-related chronic inflammatory disorders. Int. Immunopharmacol. 61, 231-240. https://doi.org/10.1016/j.intimp.2018.06.005
Salminen A, Kaarniranta K, Kauppinen A. (2017) Integrated stress response stimulates FGF21 expression: systemic enhancer of longevity. Cell. Signal. 40, 10-21. https://doi.org/10.1016/j.cellsig.2017.08.009
Salminen A, Kaarniranta K, Kauppinen A. (2017) Regulation of longevity by FGF21: interaction between energy metabolism and stress responses. Ageing Res. Rev. 37, 79–93. https://doi.org/10.1016/j.arr.2017.05.004
Salminen A., Kauppinen A., Kaarniranta K. (2017) FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J. Mol. Med. (Berl) 95, 123-131. https://doi.org/10.1007/s00109-016-1477-1
Salminen A, Kaarniranta K, Kauppinen A. (2016) Age-related changes in AMPK activation: role for AMPK phosphatases and inhibitory phosphorylation by upstream signaling pathways. Ageing Res. Rev. 28, 15-26. https://doi.org/10.1016/j.arr.2016.04.003
Salminen A, Kaarniranta K, Kauppinen A. (2016) Hypoxia-inducible histone lysine demethylases: impact on the aging process and age-related diseases. Aging Dis. 7, 180-200. https://doi.org/10.14336/AD.2015.0929
Salminen A, Kauppinen A, Kaarniranta K. (2016) AMPK/Snf1 signaling regulates histone acetylation: impact on gene expression and epigenetic functions. Cell. Signal. 28, 887-895. https://doi.org/10.1016/j.cellsig.2016.03.009
Salminen A, Kaarniranta K, Kauppinen A. (2016) AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology 17, 655-680. https://doi.org/10.1007/s10522-016-9655-7